Cell cycle and pluripotency: Convergence on octamer-binding transcription factor 4
نویسندگان
چکیده
Embryonic stem cells (ESCs) have unlimited expansion potential and the ability to differentiate into all somatic cell types for regenerative medicine and disease model studies. Octamer‑binding transcription factor 4 (OCT4), encoded by the POU domain, class 5, transcription factor 1 gene, is a transcription factor vital for maintaining ESC pluripotency and somatic reprogramming. Many studies have established that the cell cycle of ESCs is featured with an abbreviated G1 phase and a prolonged S phase. Changes in cell cycle dynamics are intimately associated with the state of ESC pluripotency, and manipulating cell‑cycle regulators could enable a controlled differentiation of ESCs. The present review focused primarily on the emerging roles of OCT4 in coordinating the cell cycle progression, the maintenance of pluripotency and the glycolytic metabolism in ESCs.
منابع مشابه
P-106: Comparative Expression of The Stemness Gene Oct-4, Nanog, Sox-2 and Rex-1 in Normal Endometrium and in Endometriosis
Background Endometriosis is a gynecological disease defined as the presence of endometrial tissue outside the uterine cavity, which caused by various factors. Recent evidences support the presence of endometrial stem cells and their possible involvement in endometriosis. Related studies mainly focus on stemness-related genes, and pluripotency markers may play a role in the etiology of endometri...
متن کاملHepatitis C virus core protein regulates OCT4 expression and promotes cell cycle progression in hepatocellular carcinoma.
Hepatitis C virus (HCV) core protein plays an important role in the development of hepatocellular carcinoma. octamer-binding protein 4 (OCT4) is critically essential for the pluripotency and self-renewal of embryonic stem cells. Abnormal expression of OCT4 has been detected in several human solid tumors. However, the relationship between HCV core and OCT4 remains uncertain. In the present study...
متن کاملA nontranscriptional role for Oct4 in the regulation of mitotic entry.
Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitot...
متن کاملIdentification and characterization of small-molecule ligands that maintain pluripotency of human embryonic stem cells.
hESCs (human embryonic stem cells) offer great potential for pharmaceutical research and development and, potentially, for therapeutic use. However, improvements in cell culture are urgently required to allow the scalable production of large numbers of cells that maintain pluripotency. Supplementing feeder-free conditions with either EHNA [erythro-9-(2-hydroxy-3-nonyl)adenine] or readily synthe...
متن کاملEvolution of the mammalian embryonic pluripotency gene regulatory network.
Embryonic pluripotency in the mouse is established and maintained by a gene-regulatory network under the control of a core set of transcription factors that include octamer-binding protein 4 (Oct4; official name POU domain, class 5, transcription factor 1, Pou5f1), sex-determining region Y (SRY)-box containing gene 2 (Sox2), and homeobox protein Nanog. Although this network is largely conserved...
متن کامل